Cytokinesis in embryophyte occurs by cell plate formation. This process entails the delivery of Golgi apparatus-derived and endosomal vesicles carrying cell wall and cell membrane components to the plane of cell division and the subsequent fusion of these vesicles within this plate.
After formation of an early tubulo-vesicular network at the center of the cell, the initially labile cell plate consolidates into a tubular network and eventually a fenestrated sheet. The cell plate grows outward from the center of the cell to the parental plasma membrane with which it will fuse, thus completing cell division. Formation and growth of the cell plate is dependent upon the phragmoplast, which is required for proper targeting of Golgi apparatus-derived vesicles to the cell plate.
As the cell plate matures in the central part of the cell, the phragmoplast disassembles in this region and new elements are added on its outside. This process leads to a steady expansion of the phragmoplast and, concomitantly, to a continuous retargeting of Golgi apparatus-derived vesicles to the growing edge of the cell plate. Once the cell plate reaches and fuses with the plasma membrane the phragmoplast disappears. This event not only marks the separation of the two daughter cells, but also initiates a range of biochemical modifications that transform the callose-rich, flexible cell plate into a cellulose-rich, stiff primary cell wall.
The heavy dependence of cell plate formation on active Golgi apparatus stacks explains why , unlike animal cells, do not disassemble their secretion machinery during cell division.
The role of phragmoplastin in creating tubules from vesicles is unique in that it wraps around the vesicle fusion neck and creates a tube. These tubular dumbbell-shaped structures when fuse end to end creating a tubular network which is first filled with callose and then with cellulose. A cell plate specific callose synthase is involved in this process
|
|